

Tetrahedron Letters, Vol. 35, No. 44, pp. 8205-8208, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$7.00+0.00

0040-4039(94)01748-4

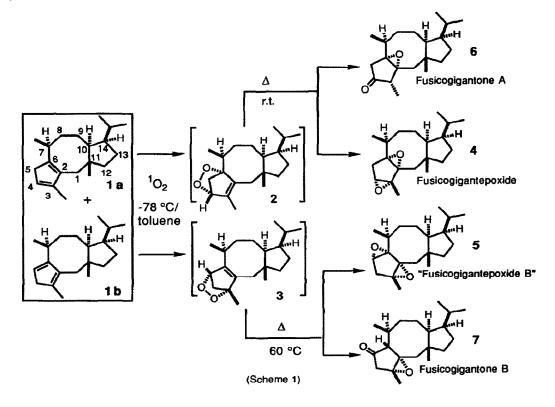
Total Synthesis of Fusicogigantones A and B and Fusicogigantepoxide via the Singlet Oxygen-Oxidation of Fusicoccadienes. "Fusicogigantepoxide B", a Missing Congener Metabolite

Nobuo Kato, Kohji Nakanishi, Xue WU, Hideyuki Nishikawa, and Hitoshi Takeshita*

Institute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816 Japan

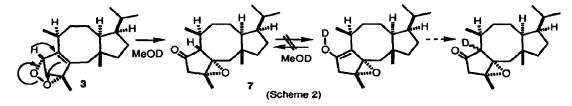
Abstract: Fusicocca-2(6),3-diene and fusicocca-2,5-diene, yet to be identified as natural products, were converted to fusicogigantones A and B and fusicogigantepoxide by oxidation with singlet oxygen. The NMR spectral analysis established their identity with natural products. Also synthesized was 2α , 3α : 5α , 6α -diepoxyfusicoccane, a regioisomer of fusicogigantepoxide.

Recently, we have synthesized fusicocca-2(6),3-diene (1a) and fusicocca-2,5-diene (1b) and utilized them to convert into plagiospirolides A and B (Chart 1),¹ isolated from a liverwort, *Plagiochila moritziana² via* a biogenesis-type Diels-Alder reaction with diplophyllolide A and diplophyllin, sesquiterpenic metabolites originally isolated from *Diplophyllum albicans*.^{3,4}


Since there are several other natural products hypothetically biosynthesized from 1, it will be worthy of synthesizing the derivatives *via* biomimetic pathways. Herein described are synthesis of fusicogigantones A and B,⁵ fusicogigantepoxide⁵ and its regioisomer, 2α , 3α : 5α , 6α -diepoxyfusicoccane, by singlet oxygen ($^{1}O_{2}$) oxidation of 1a and 1b. These metabolites are closely related with anadensin, another oxygenated fusicoccane also isolated from a liverwort, *Anastrepta orcadensis*.⁶

When a toluene- d_8 solution of a 2:3-mixture of 1a and 1b was oxygenated with ${}^{1}O_2$ generated by tetraphenylporphin (TPP) at -78 °C under oxygen atmosphere for 50 min, the endoperoxides [2: $\delta(H)$ 4.47(1H, d, J=2 Hz, C-4-H) at -30 °C, and 3: $\delta(H)$ 4.61(1H, d, J=1.5 Hz, C-5-H)] were formed according to the ¹H NMR spectroscopy. It has been known that, the endoperoxides, *proto*-products, formed by ${}^{1}O_2$ -oxidation of cyclopentadienes are highly reactive to give various secondary products; unsubstituted cyclopentadiene predominantly gave 4,5-epoxy-2-pentenal (Chart 2-a),⁷ and 3,3-dimethyloxepin-2-one was one of the ring-cleavage products from 6,6-dimethylfulvene (Chart 2-b).⁸ However, the endoperoxide derived from spiro[2.4]heptadiene gave a diepoxide and epoxy ketones, without ring cleavage (Chart 2-c).⁹ Taking this into account, the thermal reaction of the endoperoxides (2 and 3) was monitored ¹H-NMR spectrometrically. Although both 2 and 3 were stable below 0 °C, 2 gradually changed into 4 and 6 during a period of 10 h at ambient temperature. The more stable endoperoxide 3 also gave two products. 5 and 7, by heating at 60 °C for 1 h. Silica-gel column chromatography of the mixture furnished 4, 5, 6, and 7 in 12, 8, 23, and 8% yields, respectively. Since all of these prod-

dently. Comparisons of the physical properties¹⁰ of these products with reported data⁵ identified as 4=fusicogigantepoxide [colorless prisms, mp 108.5-110 °C. $[\alpha]_D^{19} + 43^\circ$ (c 0.10, CHCl₃) (lit. $[\alpha]_D + 48^\circ$)], 6=fusicogigantone A [a colorless oil. $[\alpha]_D^{18} + 29^\circ$ (c 0.50, CHCl₃) (lit. $[\alpha]_D + 28^\circ$)], and 7=fusicogigantone B [a colorless oil. $[\alpha]_D^{18} + 6^\circ$ (c 0.23, CHCl₃) (lit. $[\alpha]_D + 5.9^\circ$)]. The optical rotation of each compound is identical within an experimental error with the same sign, and, therefore, this constitutes not only the first total synthesis of 4, 6 and 7, but also determination of their absolute stereostructures.


ucts were stable under the reaction conditions, it is clear that they were formed directly from 2 and 3 indepen-

The ¹H and ¹³C NMR spectra of the remaining product, 5 [a colorless oil; m/z=304 (M⁺)], were heavily broadened because of its conformational mobilities. It was, however, clear that 5 is another diepoxide, regioisomer of 4, from the mechanistic considerations and the ¹H NMR spectrum obtained at 50 °C; δ (H)=0.85(3H, d, J=7 Hz), 0.90(3H, d, J=6.5 Hz), 0.94(3H, s), 1.07(3H, br), 1.29(3H, s), 1.58(1H, dd, J=15.5, 3.5 Hz), 1.96(1H, br d, J=15.5 Hz), 2.05(1H, d, J=16 Hz), 2.19(1H, m), 2.44(1H, br s), and 3.32(1H, d, J=3.5 Hz). The most broadened methyl group (C7-Me) appeared at δ 1.07 was confirmed to be a secondary one, since this signal splits into two of doublets at 0 °C, δ 0.77(d, J=6.5 Hz), and 1.15(d, J=6.5 Hz) in a ratio of 1:4.

Recently, the stereochemistry of the 3,4-epoxy group of 4 was revised from β - to α -configuration by Xray crystallographic study as depicted,¹¹ and the structure of 6 had been confirmed by its conversion to anadensin.^{5, 12} Therefore, the endoperoxide 2, a precursor of 4 and 6, was deduced to be a product via an α -attack of ¹⁰₂ to 1a. The exclusive α -side attack of ¹⁰₂ was consistent with the MO-MM calculations,¹³ in which α -attack of ¹⁰₂ to 1a is more favorable than β -attack by $\Delta E = 5.4$ kcal/mol.

On the other hand, stereochemistry of natural 7 seems to be not yet determined, and its probable biogenetic precursor 5 has not yet been characterized as the natural product. Consequently, the deduction of the stereochemistry of our synthetic 5 or 7 constitutes the structure verification of the natural product. In order to solve the problem, ¹⁴ we have carried out the reaction in a deuterio medium; when irradiating a mixture of 1a and 1b $(1:4.7)^1$ in benzene- d_6 and methanol- d_4 (1:1) with added Rose Bengal at 0 °C under oxygen atmosphere for 12 min, a much enhanced oxygenation took place.¹⁵ After heating at 60 °C for 1 h, the product mixture was chromatographed on a silica-gel column to afford 4 (2%), 5 (17%), 6 (9%), and 7 (9% yields). All the products, however, revealed no incorporation of the deuterium, indicating no enolization step involved in the isomerization to 6 and 7.

Thus, it can be concluded that 7 has formed via a 1,2-hydride migration under kinetically controlled conditions. As shown in Scheme 2, 7 should possess the trans relationship for the methine hydrogen at C-6 and the 2,3-epoxy oxygen.

In the ¹H NMR spectrum of 7, clear NOE's were observed between C3-Me and C-1 α -H (6.0%), C-1 β -H and C-6-H (6.3%), and C11 β -Me and C-1 β -H groups (5.0%). These observations are explainable only for 7 (Fig. 1) derived from α -attacked endoperoxide 3.

Observed NOE between C-1 β -H and C-6-H clearly excludes the other candidate, since a possible isomer of 7 derived from β -attacked endoperoxide must have α -oriented hydrogen at C-6.

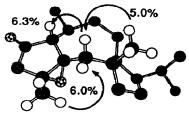
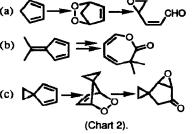


Fig. 1. Optimized structure of 7 and observed NOE's.


Therefore, $2\alpha_3\alpha_4$ -epoxy structure of 7 is evident. Accordingly, since 5 and 7 were derived from a same precursor, 5 is $2\alpha_3\alpha_5\alpha_4$ -diepoxyfusicoccane and 7, $2\alpha_3\alpha_4$ -epoxyfusicoccan-5-one.

Biogenetic pathway from 1b to 5 and 7 via 3 has now been verified, and since an occurrence of 5 in the liverwort is probable, it can be designated as "fusicogigantepoxide B".

It is interesting that both dienes 1a and 1b reacted with ${}^{1}O_{2}$; only 1b reacted with α -methylene- γ -lactones.¹ Yet, the attack of ${}^{1}O_{2}$ had occurred exclusively from the α -side of dienes, 1a and 1b, as same to the case of methylene γ -lactones. Detailed discussion on this point should be a subject of a full paper.

References

- 1. Kato, N.; Wu, X.; Nishikawa, H.; Takeshita, H. Synlett, 1993, 293.
- 2. Spörle, J.; Becker, H.; Gupta, M. P.; Veith, M.; Huch, H. Tetrahedron 1989, 45, 5003.
- 3. Benesowa, V.; Samek, Z.; Vasickova, S. Coll. Czech. Chem. Commun. 1975, 40, 1966.
- 4. Ohta, Y.; Anderson, N. H.; Liu, C.-B. Tetrahedron 1977, 33, 617.
- 5. Asakawa, Y.; Lin, X.; Tori, M.; Kondo, K. Phytochemistry 1990, 29, 2597
- Huneck, S.; Baxter, G.; Cameron, A. F.; Connoly, J. D.; Rycroft, D. S. Tetrahedron Lett. 1983, 24, 3787.
- 7. Adams, W. R.; Trecker, D. J. Tetrahedron 1971, 27, 2631.
- Harada, N.; Suzuki, S.; Uda, H.; Ueno, H. J. Am. Chem. Soc. 1972, 94, 1777.
- 9. Takeshita, H; Kanamori, H.; Hatsui, T. Tetrahedron Lett. 1973, 3139.

10. The ¹H NMR spectra were identical with the reported data, and the ¹³C NMR (in CDCl₃ at 125 MHz) of synthesized samples revealed the following chemical shifts, and the chemical shift differences with those natural compounds,⁵ $\Delta\delta$ values (= $\delta_{synthetic} - \delta_{natural}$), are cited in parentheses:

4: $\delta(C)=16.9(\pm 0)$, 18.1(± 0), 19.6(± 0.1), 21.0(± 0.2), 23.0(± 0), 23.8(± 0.1), 25.3(± 0.1), 25.4(± 0.1), 28.8(± 0.1), 32.9(± 0), 34.8(± 0.1), 42.2(± 0.2), 42.4(± 0.1), 45.0(± 0.1), 46.9(± 0.1), 47.4(± 0.2), 62.4 (± 0), 66.3(± 0), 66.5(± 0.1), and 79.2(± 0.1). 6: $\delta(C)=9.1(\pm 0)$, 17.4(± 0), 18.7(± 0.1), 20.5(± 0), 21.0 (± 0.1), 23.3(± 0.1), 23.6(± 0.2), 28.2(± 0.1), 31.5(± 0), 33.7(± 0.1), 38.4(± 0), 41.7(± 0.1), 42.4(± 0.1), 44.4(± 0.1), 46.2(± 0.2), 48.2(± 0.1), 49.6 (± 0.5), 70.0(± 0), 70.4(± 0), and 213.3(± 0.2). 7: $\delta(C)=15.1$ (± 0), 20.2(± 0.1), 23.1(± 0), 23.7(± 0), 24.1(± 0.1), 24.5(± 0), 26.5(± 0.1), 28.3(± 0), 30.6 (± 0.1), 34.6 (± 0.2), 38.2(± 0.1), 41.2(± 0.1), 43.5(± 0.1), 45.9(± 0), 47.3(± 0.2), 61.0(± 0), 62.5(± 0.1), 68.6(± 0), and 210.2(± 0.1).

- Nagashima, F.; Izumo, H.; Tori, M.; Asakawa, Y.; Kan, Y.; Takaoka, S. Abstract Papers of 37th Symposium on Terpenes, Essential Oils, and Aromatic Chemistry, Okinawa, p 44 (1993).
- 12. Related metabolite, anadensin⁶ has been derived from 6 in ref. 5. Thus, this study also constitutes a formal synthesis of anadensin.
- 13. The transition structure of the reaction site was obtained by semi-empirical molecular orbital calculations (MNDO/PM3) for Diels-Alder type reaction between 1,2,3-trimethylcyclopentadiene and ¹O₂. Then, the rest of the molecules of 2 and 3 was optimized by molecular mechanistic calculations (CAChe MM; licensed from CAChe Scientific Inc., Beaverton, Oregon, U. S. A.). Detailed discussion on the calculative studies will be a subject of a full paper.
- 14. The MO-MM calculation for 1b to 3 indicated no significant difference between two transition states; α attack is slightly favored toward β -attack by $\Delta E = 0.6$ kcal/mol.
- Merkel, P. B.; Kearns, D. R. Chem. Phys. Lett. 1971, 12, 120; Foote, C. S.; Peterson, E. R.; Lee,
 K.-W. J. Am. Chem. Soc. 1972, 94, 1032; Saito, I.; Inoue, K.; Matsuura, T. Photochem. Photobiol.
 1975, 21, 27.

(Received in Japan 6 June 1994; accepted 18 August 1994)